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In this paper we investigate the interaction between two corotating quasi-geostrophic
vortices. The initially ellipsoidal vortices are separated horizontally by a distance
corresponding to the margin of stability, as determined from an ellipsoidal analysis.
The subsequent interaction depends on four parameters: the vortex volume ratio, the
vertical centroid separation, and the height-to-width aspect ratios of each vortex. The
most commonly observed strong interaction is partial merger, where only part of
the weaker vortex is incorporated into the stronger one or cast into filamentary
debris. Despite the proliferation of small-scale filamentary structure during many
vortex interactions, on average the self-induced vortex energy exhibits an ‘inverse
cascade’ to larger scales, broadly consistent with spectral theories of turbulence.
Curiously, we observe that a range of intermediate-scale vortices are preferentially
sheared out during the interactions, leaving two main populations of large and small
vortices.

1. Introduction
The complex fluid motions within planetary atmospheres and oceans may aptly

be described as turbulent. This turbulence results from highly nonlinear interactions
between coherent swirling masses of fluid or vortices. Vortices are ubiquitous features
in such ‘geophysical’ flows, see e.g. Holton et al. (1995), Garrett (2000), Marcus (1988).
In the oceans, for example, Ebbesmeyer et al. (1986) estimated that between 103 and
104 vortices populate the surface layer of the North Atlantic alone. This turbulent
motion, however, is greatly affected by the planetary rotation and the stable density
stratification. This qualitatively alters the nature of turbulence, reducing the effects of
vortex stretching, and rendering the flow quasi-two-dimensional. Moreover, rotation
and stratification make it useful to regard vortices as coherent masses of potential
vorticity, a conserved material tracer in the absence of diabatic effects and viscous
dissipation. These effects are often weak on the space and time scales characteristic
of geophysical turbulence.

Vortex interactions are the key ingredient in the turbulent evolution of geophysical
flows, but, by their very nature, such interactions are strongly nonlinear, and thereby
challenging to understand. As a result vortex interactions have been primarily studied
in two-dimensional flows (relevant to motions having horizontal scales L larger than
the Rossby deformation length LD =NH/f , where N is the buoyancy frequency,
H is the characteristic fluid depth and f is the Coriolis frequency, see Dritschel
et al. 1999). Much of this research has attempted to explain, in physical space by
the growth of vortices through merger, the average inverse energy cascade seen in
two-dimensional turbulence in spectral space. Initially, the interaction between two
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identical vortices was considered. Waugh (1992) identified three different types of
interactions: merger, pulsation with exchange and pulsation using the terminology of
Melander, Zabusky & McWilliams (1992). These types of interaction are comparable
to the interaction regimes defined in Reinaud & Dritschel (2002) in the three-
dimensional context (see below), with merger corresponding to complete merger,
pulsation with exchange corresponding to either partial merger or weak exchange
depending upon the volume of potential vorticity (PV) transferred, and pulsation
corresponding to elastic interaction. Waugh (1992) also found the generation of
filaments a common occurrence in vortex interactions. The work of Waugh (1992)
was generalized in Dritschel & Waugh (1992) to vortices of different size. In this case,
four interaction regimes were found, and most importantly complete merger was
found to be surprisingly uncommon. In general, vortex interactions were frequently
found to produce smaller vortices, making the association with spectral cascade
theories at best tenuous. Dritschel (1995) investigated the interactions of non-circular
steadily corotating vortices and demonstrated that strong interactions arise from a
linear instability of the basic vortex configuration. Again complete vortex merger was
found to be rare, and smaller vortices were often produced.

In the more realistic three-dimensional context, the simplest approach to simulating
vortex interactions under geophysical conditions employs the quasi-geostrophic model.
This model contains the dominant effects of the stable stratification and the rapid rota-
tion of the Earth. It conveniently reduces the full equations to a single dynamical equa-
tion expressing material conservation of the PV anomaly and a simple linear inversion
relation for the recovery of the velocity field. The model is based on the hydrostatic and
geostrophic approximations, which neglect the fluid acceleration (in the rotating frame
of reference) in the momentum equations. These approximations are valid so long as
the Rossby and Froude numbers are sufficiently small (i.e. the background rotation
and stratification are sufficiently strong), see Gill (1982). In the quasi-geostrophic (QG)
model, the PV anomaly (hereinafter referred to as PV for simplicity) represents the de-
parture of the full PV field from the background PV field associated with the planetary
rotation in the stratified fluid, see Hoskins, McIntyre & Robertson (1985). The (geo-
strophic) fluid advection in QG flows is constrained to be parallel to isopycnals — i.e.
layer-wise two-dimensional — though the PV distribution is fully three-dimensional.

Two-dimensional and QG flows are in fact closely analogous. The inverse energy
cascade also occurs in QG turbulence, and appears to exhibit the same spectral form.
Hua & Haidvogel (1986) have verified a theoretical prediction made by Charney
(1971) of an inverse energy cascade in QG turbulence by demonstrating that PV
forms isolated structures in both forced and freely evolving QG turbulence. Two-
dimensional and QG flows also exhibit the same mathematical regularity, see Tran &
Dritschel (2006).

Recent studies of vortex interactions in QG flows include works by von Hardenberg
et al. (2000), Dritschel (2002), Reinaud & Dritschel (2002), Reinaud, Dritschel &
Koudella (2003) and Reinaud & Dritschel (2005). The studies of von Hardenberg
et al. (2000) and Dritschel (2002) focused on the influence of the vortex shape, i.e.
its height-to-width aspect ratio, on the critical merger distance between horizontally
aligned, equal-volume, equal-PV vortices. Dritschel (2002) found that the the merger
of tall vortices does not tend to two-dimensional merger. Instead, the vortices break
up into three-dimensional structures, due to a basic instability affecting tall vortices
(after the conventional f/N scaling of the vertical coordinate), see Dritschel & de la
Torre Juárez (1996), Dritschel, de la Torre Juárez & Ambaum (1999) and Billant,
Dritschel & Chomaz (2006). Reinaud & Dritschel (2002) investigated the effects of a
vertical offset on the merger distance between two vortices of equal PV, equal volume
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and unit height-to-width aspect ratio (after the f/N scaling). It was discovered that
vertically offset vortices can actually merge from greater horizontal separations due
to the effects of vertical shear. On the other hand, in simulations of freely-decaying
QG turbulence, Reinaud et al. (2003) demonstrated that the most robust, long-lived
vortices have a mean height-to-width aspect ratio of approximately 0.8, vertical shear
being responsible for the oblate vortex shape. Reinaud & Dritschel (2005) performed
a linear-stability analysis to determine the critical merger distance between two equal
PV ellipsoidal vortices, as a function of the volume ratio of the ellipsoids, their
vertical offset and their height-to-width aspect ratios. To probe this large parameter
space, Reinaud & Dritschel (2005) used a vastly-reduced model, the ‘ellipsoidal model’
(ELM), described in Dritschel, Reinaud & McKiver (2004), which represents vortices
as uniform-PV ellipsoids, neglecting higher-order non-ellipsoidal deformations. The
ELM nevertheless accurately approximates the critical merger distance, based on
comparisons with the full QG model, see Reinaud & Dritschel (2005).

Due to the high computational cost of performing accurate three-dimensional
QG simulations, von Hardenberg et al. (2000), Dritschel (2002) and Reinaud &
Dritschel (2002) examined a relatively small parameter space in the entire space of
vortex interactions. In the present study, we explore this space much more widely,
quantifying the results of a large variety of vortex interactions. First, the ELM is
used to find the vortex configurations on the approximate margin of stability, as in
Reinaud & Dritschel (2005). Then, marginally unstable configurations are studied by
direct numerical simulation, using the contour-advective semi-Lagrangian algorithm
(CASL), described in Dritschel & Ambaum (1997). We focus on the height-to-width
aspect ratio of both vortices, the vertical offset of the vortex centres and the vortex
volume ratio. We restrict our analysis to vortices having equal, uniform PV. Arguably,
vortices of near equal PV are the most likely to produce strong interactions.

In § 2 we provide a brief description of the quasi-geostrophic model and the
associated equations. We discuss the initial conditions in § 3 along with the numerical
simulation parameters. We present our results in § 4 and draw conclusions and discuss
future developments in § 5.

2. The quasi-geostrophic model
The inviscid quasi-geostrophic (QG) model may be obtained from an asymptotic

expansion of Euler’s equations for ε = H/L � 1, where H and L are characteristic
height and length scales, and for Fr2 � Ro � 1, where Fr and Ro are the Froude and
Rossby numbers respectively. The Froude number Fr may be defined as the ratio of
a characteristic horizontal vorticity to the buoyancy frequency N , while the Rossby
number may be defined as the ratio of a characteristic vertical vorticity to the Coriolis
frequency f . Details may be found in, e.g., Gill (1982).

For constant N and f , following many previous studies, we may stretch the vertical
coordinate z by Prandtl’s ratio N/f , removing any explicit dependence on N and f in
the equations. Furthermore, upon neglecting relatively weak dissipative and diabatic
effects, the governing equations reduce to

Dq

Dt
=

∂q

∂t
+ (u · ∇)q = 0, (2.1)

∇2ψ = q, (2.2)

u =

(
−∂ψ

∂y
,
∂ψ

∂x
, 0

)
, (2.3)
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Figure 1. Geometry of initial conditions.

where q(x, y, z, t) is the potential vorticity (PV), ψ is the streamfunction and u is the
velocity. The flow is layerwise two-dimensional due to the lack of vertical advection
although Poisson’s equation (2.2) is isotropic.

We use the contour-advective semi-Lagrangian (CASL) algorithm to solve these
equations. PV is materially conserved (by 2.1), and for the piecewise-uniform
distribution considered here, the PV field can be represented entirely by contours
lying on horizontal surfaces. These contours remain at all times within these surfaces.
The velocity field u is obtained by inverting the Laplacian ∇2 in spectral space. A full
discussion of the CASL algorithm can be found in Dritschel & Ambaum (1997).

3. Initial conditions
We investigate pairs of corotating vortices of uniform and equal PV (set to q =2π

without loss of generality) situated at the margin of stability. Reinaud & Dritschel
(2005) computed families of (relative) equilibria for two corotating vortices within
the ellipsoidal model (ELM). In that model, vortices are modelled by ellipsoids of
uniform PV and any small, higher-order, non-ellipsoidal deformations are filtered,
see Dritschel et al. (2004), Reinaud & Dritschel (2005). Each family of equilibria
consists of vortices having a prescribed volume ratio, height-to-width aspect ratios
and vertical offset. Members of each family differ only in their horizontal separation,
most conveniently measured by the horizontal gap δ between the two innermost edges
of the vortices. Vortices well separated in the horizontal have only a weak influence
on one another and such equilibria are always stable. Below a critical distance or gap
δ, the equilibria become unstable, making possible strong interactions such as vortex
merger in the full, nonlinear QG equations.

We use in this study the first unstable equilibrium obtained as the initial conditions
for the CASL simulations. This equilibrium is not stricto sensu an equilibrium of the
full QG equations solved by CASL, yet provides an accurate estimate for it at minimal
computational cost. The determination of the full equilibra, as done in Reinaud &
Dritschel (2002) is simply impossible for the large parameter space considered here.
The basic geometry of the flow is presented in figure 1 where the vortex ellipsoids have
vertical half-heights hi , volumes Vi and horizontal radii ri , where i = 1, 2 corresponds
to each vortex; they are separated by δ in the horizontal and offset by �z in the
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Parameter Min Max Step

h1/r1 0.4 1.2 0.2
h2/r2 0.4 1.2 0.2
ρV 0.2 1.0 0.2
�z/(h1 + h2) 0.0 0.8 0.2

Table 1. Range of parameters considered in this study. Here hi/ri , i =1, 2 is the height-to-
width aspect ratio of each vortex, ρV is the volume ratio V2/V1 and �z/(h1 + h2) the vertical
offset.

vertical. We define ρV = V2/V1 as the volume ratio between the two vortices. The
range of parameters considered is listed in table 1.

In a few cases, Reinaud & Dritschel (2005) were unable to determine the margin
of instability, due to the presence of an unphysical oscillatory mode for certain
horizontally-aligned equilibria. To fill this hole in the parameter space, we carried out
a procedure similar to that in Reinaud & Dritschel (2005) starting from another
family with a vertical offset of �z =0.2. Then, rather than decreasing the gap
δ, we decreased �z to zero. From there, we decreased δ, and in most cases the
margin of instability could then be found. In rare cases it was necessary to use
a more accurate representation of the external streamfunction of the ellipsoids by
increasing the number of internal singularities (from 7 to 13) used to approximate the
streamfunction (details may be found in Dritschel et al. 2004). This has a insignificant
effect on the vortex shape characteristics, but allows one to circumvent the oscillatory
mode, see Reinaud & Dritschel (2005).

In Reinaud & Dritschel (2005), the length scale of the problem was fixed by setting
the total volume of the vortices to 4π/3. To minimize periodicity effects in the CASL
numerical simulations (see Dritschel & Macaskill 2000), we shrink the vortices so
that they fit within a 23 box centred at the origin in the (2π)3 computational domain
with periodic boundary conditions, as in Reinaud & Dritschel (2002). We rescale
distances back to their original dimensions for diagnosis in order to ensure that all
vortex configurations have identical total circulation. All simulations were performed
using a basic grid of resolution 643, with PV contours resolved down to a scale of a
tenth of the grid spacing, as normal (see Dritschel & Ambaum 1997).

4. Results
4.1. Comparison of interactions

Each case defined in table 1 was simulated using the CASL algorithm for 60 time
units. For reference, an isolated spherical vortex of uniform PV q has a rotation
period of T = 6π/q =3 here. Overall we simulated 625 cases.

We classify the interactions in each simulation following the procedure of
Dritschel & Waugh (1992). By calculating the ratio of the vortices’ final volumes
to their initial volumes we can determine which type of interaction has taken place.
Defining V̂1 =Vf 1/Vi1 and V̂2 = Vf 2/Vi2, where Vi and Vf are respectively the initial
and final vortex volumes, the interaction types are classified according to table 2.

We identify vortices simply as contiguous regions of PV in the three-dimensional
space. The procedure does not use an additional criterion, and therefore is not biased
on a particular perceived view of a ‘vortex’. While this implies that ‘filaments’ may
be classified as ‘vortices’, experience shows that most of the structures identified this
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Merger type V̂1 V̂2

Elastic interaction (EI) 1 1
Partial straining out (PSO) 1 <1
Complete straining out (CSO) 1 0
Partial merger (PM) >1 <1
Complete merger (CM) >1 0

Table 2. Criteria for classification of vortex interactions. In EI, there is no volume change, in
PSO part of one vortex is torn away and is elongated into filamentary structures, in CSO one
entire vortex is elongated into filamentary structures, in PM one vortex incorporates part of
the other (but both vortices survive), and in CM only one vortex survives after incorporating
either all or part of the other.

way, especially at late times, have characteristics commonly associated with a ‘vortex’,
i.e. having shapes not severely distorted from spherical.

We find that for ρV = 0.2, 92 % of the cases fall under the partial straining out
(PSO) regime with the remaining 8 % being partial merger (PM). For higher volume
ratios, the interactions are predominantly PM. For 0.4 � ρV � 1.0, 85.8 % of the cases
are PM, 9.8 % of cases are PSO, and 4.4 % of cases are complete merger (CM). Of the
cases that result in complete merger, 72.7 % of these occur for cases where ρV = 1.0
and (the same) 72.7 % occur where h1/r1 = h2/r2. Partial straining out does not occur
at all for the equal-volume vortices in this parameter space. No instances of complete
straining out (CSO) or elastic interactions (EI) are seen in this parameter space.

In figure 2 we show four time frames from an interaction in a partial straining
out regime. The initial conditions are h1/r1 = 0.8, h2/r2 = 1.0, ρV =0.2 and �z = 0.2.
At time t = 7 filaments begin to be stripped away from the smaller vortex. These
filaments orbit the larger vortex but do not merge with it. By t = 60 the smaller
vortex has lost 5 % of its original volume and now has h/r =0.92. The volume and
aspect ratio of the larger vortex have remained unchanged throughout.

The simulation displayed in figure 3 has initial conditions h1/r1 = 1.0, h2/r2 = 0.4,
ρV = 1.0 and �z/(h1 + h2) = 0.2. In this case the volume of PV transferred between
the vortices is sufficient to classify the interaction as partial merger. At t = 7 the
two initial vortices temporarily merge into a ‘dumbbell’ shaped configuration with
an effective h/r of 0.58. At t = 13 the dumbbell vortex begins to eject filaments (see
figure 4 for an alternative view at t = 14), and at t = 21 it splits into two large scale
vortices with a volume ratio of 0.53. The larger of these vortices has h/r = 0.79 and
the smaller has h/r = 0.57. It is apparent that these small-scale structures are ejected
by the larger vortex between t = 21 and t =40 as its volume at t = 40 is 91 % of what
it was at t =21. The smaller vortex, on the other hand, has grown by 0.4 % during
this time. At t =60 the number of structures present has decreased. At this final time
the larger vortex has grown by 2 % over its original volume at t = 21 whereas the
smaller vortex has 2 % less volume than at t = 21. The ending volume ratio of these
two main vortices is 0.56.

One other interesting example is shown in figure 5. On first inspection one would
expect this interaction to belong in the complete-merger regime and indeed it displays
behaviour like that described in Waugh (1992) for complete-merger where the central
vortex elliptical shape has an aspect ratio greater than 3. However, using the criteria
set out in table 2 this interaction is classified as partial-merger due to the large
quantity of filaments ejected. The initial vortices merge by t =2 forming a central
vortex of h/r = 0.97. Figure 5(b) shows filaments forming at both vertical apexes
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(a) (b)

(c) (d )

Figure 2. Vortex evolution in a PSO regime. h1/r1 = 0.8, h2/r2 = 1.0, ρV = 0.2 and �z = 0.2.
Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d) t = 60. The viewing angle is 60◦

from the vertical and the horizontal scale is ±1.5 centred around the origin of the domain.
Light-grey areas show the front and back walls of the box which span the full height of the
PV distribution.

of the central vortex at t = 14. At t = 16 these filaments begin to separate from the
central vortex. By t = 40 the central vortex has reduced to 90 % its volume at t =2
and its aspect ratio h/r has reduced to 0.89. At the final time, t = 60, the central
vortex has further decreased in volume to 81 % of that at t = 2 and its h/r is now
0.81. A near vertical view of the PV at this time is shown in figure 6 — note in
particular the formation of vortices occurring in the outer filaments, where the strain
of the central vortex is too weak to prevent vortex roll-up.

4.2. Analysis over entire parameter space

Individual cases exhibit a wide variety of behaviour and significant complexity. We
next examine the parameter space as a whole, and look for trends in certain statistics
to understand better general aspects of vortex interactions.

An important feature of geophysical turbulent flows is the on-average cascade of
energy to large scales — in spectral space. To determine if an analogous cascade
occurs in physical space, we diagnose the vortex self-energy Es

Es = −1

2

∫∫∫
qψ dV (4.1)

at various times during each interaction. In the above, ψ is the streamfunction induced
by the vortex on itself. Note that, generally, the total energy is dominated by the
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(a) (b)

(c) (d)

Figure 3. Vortex evolution in a partial-merger (PM) regime. h1/r1 = 1.0, h2/r2 = 0.4, ρV = 1.0
and �z = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d) t = 60. The viewing
angle is 60◦ from the vertical and the horizontal scale is ±1.5 centred around the origin of the
domain. Light-grey areas show the front and back walls of the box which span the full height
of the PV distribution.

sum of vortex self-energies as the vortex interaction energy is relatively small, see
Reinaud & Dritschel (2005).

Figure 7 shows the number of vortices of a given self-energy Es and mean radius r ,
with r = (3V/4π)1/3, taken over the entire parameter space at times t = 0, 30, 40 and
60. Note in particular the very large number of small-scale vortices generated during
the interaction processes, as seen in the specific examples presented in figures 3 and 5.

The energy distribution, particularly for large vortices and to some extent the
smallest vortices, is well approximated by Es = (4πQ2/15)r5, the energy of a spherical
vortex of uniform PV, Q. One would expect such a power-law dependence from (4.1),
but it is striking just how well the data are fit by the energy of a spherical vortex. A
noticeable gap develops in the range 10−0.6 ≈ 0.25 to 10−0.4 ≈ 0.40. Energy levels for
vortices in this range at earlier times are significantly lower than those of spherical
vortices of the same volume. This indicates that the vortices are strongly deformed,
and as time proceeds, appear to be sheared out or reabsorbed by the larger vortices.

To determine what happens to the vortices in this range, we plot the mean radius
of all of the largest vortices versus time in figure 8. This shows that there is no growth
of the largest vortex at later times, hence it follows that the vortices in the range
0.25 � r � 0.40 are destroyed by shear effects from the larger vortices.

Interestingly, the same shear effects do not destroy the smallest vortices. This
appears to be related to the fact that small vortices can move further away from
the main vortex or vortices while maintaining conservation of angular momentum.
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Figure 4. Near vertical view of the dumbbell vortex at t = 14 in figure 3 (the viewing angle
is 10◦ from the vertical).

Essentially, thin filaments may be ejected to greater distances initially than the wider
filaments of PV, as is clearly evident from figure 5, for example. These thin filaments
then roll up into small vortices, while the larger filaments must battle the stronger
shear of the larger vortices to survive. The larger vortices effectively remove all other
vortices in close proximity.

Judging by the apparently even spacing between contours for smaller vortices in
figure 7 it appears that the number density is related to the vortex radius by a
power law. We confirm this in figure 9, which shows that the number density n(r) for
small vortices approximately follows n ∝ r−4, indicated in the figure by a reference
line. For widely separated vortices, when the energy is dominated by the vortex
self-energies, this r−4 number density distribution corresponds in spectral space to a
k−3 energy spectrum (identifying k with r−1), which is the classical small-scale energy
spectrum predicted by Charney (1971) for quasi-geostrophic turbulence. This follows
by equating the energy density n(r)Es(r) dr with E(k) dk. Finally, it is also worth
noting that despite the enormous quantity of small vortices, the volume of vortices
with radius log10 r < −0.325 (i.e. r < 0.473) is only 0.8 % of the total volume of vortices.

We next investigate how the vortex self-energy is redistributed during the
interactions. Figure 10 shows the result of integrating the self-energy displayed in
figure 7(a) and 7(d) with respect to vortex radius. Here F , defined by

F (r) =
1

n

∫ r

0

Es(r
′) dr ′,
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(a) (b)

(c) (d)

Figure 5. Vortex evolution in a partial-merger (PM) regime. h1/r1 = 1.2, h2/r2 = 1.2, ρV = 1.0
and �z = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d) t = 60. The viewing
angle is 60◦ from the vertical and the horizontal scale is ±2.0 centred around the origin of the
domain. Light-grey areas show the front and back walls of the box which span the full height
of the PV distribution.

gives the amount of energy contained in all vortices up to scale r (normalized by
the number of simulations, n=625). The t = 60 curve in figure 10 is arranged in
two distinct parts. There is an initial increase in F (r) between r = 0.5 and r = 0.76
corresponding to the smaller vortices and filaments created during the interactions.
The larger vortex from partial-merger events and the main vortex from complete-
merger events occupy the steep part of the curve F (r) around r =0.84. This is also
evident in figure 7, where a small gap occurs around r = 0.8. The conclusion from
figure 10 is that there is an average inverse cascade of self-energy, i.e. a transfer of
self-energy to larger-scale structures in physical space.

To investigate the mean energy-containing scale, we introduce the energy-weighted
mean radius r̄ at a time t by

r̄ =

m∑
i=1

Esiri

m∑
i=1

Esi

, (4.2)

where m is the total number of vortices over the whole parameter space at a particular
time t . Figure 11 shows the variation of r̄ with time. Initially, r̄ increases over the
first 14 time units, during which interactions are predominantly merger. Afterwards,
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Figure 6. Near vertical view of the PV distribution at t = 60 in figure 5 (the viewing angle is
10◦ from the vertical).

Time (t) Esl Esg

0 10.41 11.45
14 0.73 23.83
30 2.49 20.32
40 3.09 18.84
60 3.30 17.09

Table 3. Values of Esl , Esg at times 0, 14, 30, 40 and 60.

r̄ begins to decrease as the vortices separate and eject filaments. By t = 50, r̄ has
converged to r̄ =0.87, showing that, on average, the mean vortex radius has increased
by 3.5 %.

To understand better the nature of the energy transfers, we consider next the mean
self-energy Esl of vortices whose radius is less than r̄0 (r̄ at t =0), and similarly the
mean self-energy Esg of vortices whose radius is greater than r̄0. Figure 12 plots the
ratio Esl/Esg versus time (Esl and Esg are listed separately in table 3). The ratio
of mean energies decreases rapidly at early times, once again indicating an ‘inverse
cascade’ of the self-energy towards larger scales. However, Esl/Esg begins to increase
at about t = 14, just when small-scale structures begin to be ejected, and when ‘merger’
becomes a poor characterization of typical interactions. By t = 60, 70 % of the vortex
self-energy is contained in structures whose mean radius is greater than r̄0.



128 R. R. Bambrey, J. N. Reinaud and D. G. Dritschel

–8

–6

–4

–2

0

2

–1.5 –1.0 –0.5 0

log10 Es

log10 Es

(a) (b)

log10 r log10 r

(c) (d )

–8

–6

–4

–2

0

2

–1.5 –1.0 –0.5 0

–8

–6

–4

–2

0

2

–1.5 –1.0 –0.5 0
–8

–6

–4

–2

0

2

–1.5 –1.0 –0.5 0

Figure 7. Contours of the number density (n) of vortices (contoured as log10 n). The first
(outermost) contour has log10 n= 0, the innermost contour has log10 n= 11, the contour
increment is log10 �n = 0.5. 100 intervals were used in each direction, equally spaced in
logarithmic scales. We add for reference the line corresponding to the energy of a sphere of
PV Q, Es = (4πQ2/15)r5.

In figure 13 we show how the mean radius of the largest vortex at the end of
evolution depends on the initial volume ratio. We find that the closer the initial
volume ratio is to unity, the larger the main final vortex tends to be and hence the
greater its self-energy. A high degree of variance is seen for ρV = 1.0, and the size of
this error bar is not dependent on the vertical offset as a similarly high variance is
seen for ρV = 1.0 when averaging only over h/r for each value of �z.

5. Conclusions
In this paper we have investigated the interactions between two corotating quasi-

geostrophic vortices of varying height-to-width aspect ratios, volume ratios and
vertical offsets separated in the horizontal so that they reside at the approximate
margin of stability.
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Figure 8. Mean radius of the largest vortex against time, with the radius averaged over all
cases.
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Figure 9. Number density of vortices as a function of the radius. As in figure 7 we use 100
intervals in the direction of log10 r . This is at t = 60. We add for reference the slope r−4, which
corresponds to an energy spectrum E(k) ∝ k−3 for widely separated vortices.

We find that for the smallest volume-ratio interactions considered (ρV = 0.2), the
evolution is most likely to fall into the partial straining out regime, where the smaller
vortex becomes smaller by losing filaments while the larger vortex remains unchanged.
For larger volume ratios, between 0.4 and 1.0, interactions are more likely to be partial
mergers, where part of the smaller vortex is incorporated into the larger one. In the
parameter space considered, we find that the classical picture of vortex merger, i.e.
complete merger, is extremely rare and results almost exclusively from interactions
between vortices of equal volume and height-to-width aspect ratio. Perhaps most
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Figure 11. Energy-weighted mean radius(r̄) plotted against time t .

importantly, there is no significant dependence of the interaction type on the vertical
offset of the vortices. This conclusion applies to the full range of vertical offsets for
which vortices can potentially merge.

Over the wide-ranging initial conditions considered, the first interactions to occur
between the vortices tend to be merger. Then, after about five characteristic vortex
rotation periods, regardless of whether the merged pair remains together or not,
a large number of small-scale filamentary structures are ejected. But despite this,
the vortex self-energy exhibits an ‘inverse cascade’ in that, on average, self-energy is
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Figure 13. Ratio of the radius of the largest vortex at t = 60 (r1f ) to the radius of the
largest vortex at t = 0 (r1i) plotted against the initial volume ratio, ensemble-averaged over all
height-to-width aspect ratios and vertical offsets.

transferred to larger physical scales over time. Vortices in an intermediate range of
scales, here r = 10−0.6 ≈ 0.25 to r = 10−0.4 ≈ 0.40, are sheared out into filaments by the
larger vortices (note: all vortex configurations have the same total circulation and
volume, here 4π/3). This leaves two primary vortex populations, vortices whose mean
radii lie between 0.40 and 1.0 and vortices whose mean radii lie below 0.25. Almost
no vortices are found between these primary populations.
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The largest vortex in an interaction tends to grow by the biggest proportion when
the initial vortex volume ratio is close to unity. There is, however, a high degree
of variance in this growth, with the mean radius growing anywhere between 4.8 %
and 17.7 %. Statistically, in a turbulent flow containing an ever increasing number of
vortices with decreasing scale (see Reinaud et al. 2003), interactions between similarly-
sized vortices are likely to be rare compared to interactions between disparate-sized
vortices. Notably, the latter result in weak or no growth of the larger vortex.

This study has used the simplest model of a rotating, stratified flow, the quasi-
geostrophic model, strictly valid only for small Rossby numbers and small Froude
numbers. It is important in practical applications to the atmosphere and oceans to
determine how these results are modified by relaxing the QG approximation, allowing
ageostrophic effects and the spontaneous generation of inertia-gravity waves during
vortex interactions. These effects are presently unknown.

Support for this research has come from the UK Natural Environment Research
Council (grant ref. NER/S/A/2003/11903).
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